Package: mfGARCH 0.2.1

mfGARCH: Mixed-Frequency GARCH Models

Estimating GARCH-MIDAS (MIxed-DAta-Sampling) models (Engle, Ghysels, Sohn, 2013, <doi:10.1162/REST_a_00300>) and related statistical inference, accompanying the paper "Two are better than one: Volatility forecasting using multiplicative component GARCH models" by Conrad and Kleen (2020, <doi:10.1002/jae.2742>). The GARCH-MIDAS model decomposes the conditional variance of (daily) stock returns into a short- and long-term component, where the latter may depend on an exogenous covariate sampled at a lower frequency.

Authors:Onno Kleen [aut, cre]

mfGARCH_0.2.1.tar.gz
mfGARCH_0.2.1.zip(r-4.5)mfGARCH_0.2.1.zip(r-4.4)mfGARCH_0.2.1.zip(r-4.3)
mfGARCH_0.2.1.tgz(r-4.4-x86_64)mfGARCH_0.2.1.tgz(r-4.4-arm64)mfGARCH_0.2.1.tgz(r-4.3-x86_64)mfGARCH_0.2.1.tgz(r-4.3-arm64)
mfGARCH_0.2.1.tar.gz(r-4.5-noble)mfGARCH_0.2.1.tar.gz(r-4.4-noble)
mfGARCH_0.2.1.tgz(r-4.4-emscripten)mfGARCH_0.2.1.tgz(r-4.3-emscripten)
mfGARCH.pdf |mfGARCH.html
mfGARCH/json (API)

# Install 'mfGARCH' in R:
install.packages('mfGARCH', repos = c('https://onnokleen.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/onnokleen/mfgarch/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

4.58 score 63 stars 12 scripts 322 downloads 5 exports 9 dependencies

Last updated 2 years agofrom:3de3314dd7. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-win-x86_64OKNov 03 2024
R-4.5-linux-x86_64OKNov 03 2024
R-4.4-win-x86_64OKNov 03 2024
R-4.4-mac-x86_64OKNov 03 2024
R-4.4-mac-aarch64OKNov 03 2024
R-4.3-win-x86_64OKNov 03 2024
R-4.3-mac-x86_64OKNov 03 2024
R-4.3-mac-aarch64OKNov 03 2024

Exports:fit_mfgarchplot_weighting_schemesimulate_mfgarchsimulate_mfgarch_diffusionsimulate_mfgarch_rv_dependent

Dependencies:digestgenericslatticemaxLikmiscToolsnumDerivRcppsandwichzoo